PC11 Lesson 7.3

Tuesday, May 9, 2017 12:12 PM

7.3 Absolute Value Equations

Warm up 1:
a) Graph $y=|x+4|$ and $y=2$ using a different colour for each equation.

$$
y=|x+4| \quad y=2
$$

b) At what points do the graphs intersect?

$$
(-6,2) \text { and }(-2,2)
$$

c) Use your calculator to compare the table of values $y_{1}=|x+4|$ and $y_{2}=2$. Complete the table below. $y=$ math \rightarrow hum l.absc
d) Does your table of values show your points) of intersection? yes
Explain how you could use a table of values to determine the points) of intersection.

Look for x-values in which $y_{1}=y_{2}^{-1}$

x	y_{1}	y_{2}
-7	3	2
-6	2	2
-5	1	2
-4	0	2
-3	1	2
-2	2	2
-1	3	2

The solutions) to an absolute value equation, is represented by the x-coordinate of the intersection points).
e) Write $y_{1}=|x+4|$ in piecewise notation.

$$
\begin{array}{ll}
x+4 \mid \text { in piecewise notation. } & x<-4 \\
|x+4| & = \begin{cases}-x-4, & x \geq-4 \\
x+4 & , x\end{cases}
\end{array}
$$

f) Solve the equation $|x+4|=2$ algebraically to verify the two solutions calculated in part
(b)?

$$
\begin{array}{cc}
\frac{\text { case 1 }}{x+4=2} & \begin{array}{c}
\text { Case 2 } \\
x+x-4=2 \\
x=-2
\end{array} \\
-x=6 \\
x=-6
\end{array}
$$

g) How do you use your piecewise notation to begin solving an absolute value equation?
we want to solve the eqn for each "piece"

Example 1: Solve each equation algebraically. Verify your solutions) algebraically.
a) $|3 x-1|=4$

Case 1

solve

$$
3 x=5
$$

$$
x=\frac{5}{3}
$$

$$
\text { verify }\left\{\begin{aligned}
\left|3\left(\frac{5}{3}\right)-1\right| & =4 \\
|5-1| & =4 \\
|4| & =4 \\
4 & =4
\end{aligned}\right.
$$

b) $|1-4 x|=6 x$

$$
\begin{gathered}
\begin{array}{c}
\text { Case } 1 \\
1-4 x=6 x \\
1=10 x \\
\frac{1}{10}=x \\
\left|1-4\left(\frac{1}{10}\right)\right|=6\left(\frac{1}{10}\right) \\
\left|1-\frac{2}{5}\right|=\frac{3}{5} \\
\left|\frac{3}{5}\right|=\frac{3}{5} \\
\frac{3}{5}=\frac{3}{5}
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
|3(-1)-1| & =4 \\
|-3-1| & =4 \\
|-4| & =4 \\
4 & =4
\end{aligned}
$$

Case 2

$$
\begin{gathered}
-3 x+1=4 \\
-3 x=3 \\
x=-1
\end{gathered}
$$

$$
\frac{\text { case } 2}{-1+4 x=6 x}
$$

$$
-1=2 x
$$

$$
\begin{aligned}
& -1=2 x \\
& -\frac{1}{2}=x
\end{aligned} e^{x+r a n} \text { answer }
$$

$$
\left|1-4\left(-\frac{1}{2}\right)\right|=6\left(-\frac{1}{2}\right)
$$

$$
|1+2|=-3
$$

$$
|3|=-3
$$

$$
3=-3
$$

$$
\therefore x=\frac{1}{10}
$$

c) $\left|x^{2}+10 x+15\right|=6$

Case 1

$$
\begin{aligned}
& x^{2}+10 x+15=6 \\
& x^{2}+10 x+9=0 \\
& (x+9)(x+1)=0 \\
& x+9=0 \quad x+1=0 \\
& x=-9 \quad x=-1
\end{aligned}
$$

verify

Case 2

$$
\begin{aligned}
& -x^{2}-10 x=15=6 \\
& 0=x^{2}+10 x+15+6 \\
& 0=x^{2}+10 x+21 \\
& 0=(x+3)(x+7) \\
& x+3=0 \quad x+7=0 \\
& x=-3 \quad x=-7
\end{aligned}
$$

$$
\begin{aligned}
& \left|(-7)^{2}+10(-7)+15\right|=6 \\
& \left|(-3)^{2}+10(-3)+15\right|=6 \\
& \therefore x=-9,-7,-3,-1
\end{aligned}
$$

d) $\left|x^{2}+8 x+16\right|=1$

Case 1

$$
\begin{aligned}
& x^{2}+8 x+16=1 \\
& x^{2}+8 x+15=0 \\
& (x+3)(x+5)=0 \\
& x=-3 \quad x=-5
\end{aligned}
$$

$$
\begin{gathered}
\left|(-3)^{2}+8(-3)+16\right|=1 \\
|9-24+16|=1 \\
\mid 11=1
\end{gathered}
$$

verify

$$
\begin{gathered}
\left|(-5)^{2}+8(-5)+16\right|=1 \\
|25-40+16|=1 \\
\mid 11=1
\end{gathered}
$$

$$
\therefore x=-3,-5
$$

Example 2: Use your graphing calculator to solve each absolute value equation. Round solutions to two decimal places where necessary.
a)

$$
\begin{aligned}
& \left|x^{2}-2 x-6\right|=4 \\
& y_{1}:\left|x^{2}-2 x-6\right| \\
& y_{2}: 4
\end{aligned}
$$

2nd-cale
5: intersect
Solutions):
$(-2.32,4)$,

b) $3 x+18=2\left|x^{2}+6 x\right|$

$$
\begin{aligned}
& y_{1}: 3 x+18 \\
& y_{2}: 2\left|x^{2}+6 x\right|
\end{aligned}
$$

$$
\begin{gathered}
x \min -10 \\
\max 5 \\
y \min -2 \\
\max 30
\end{gathered}
$$

Solution (s):

$$
\begin{aligned}
x= & 1.5,-1.5,-6 \\
& (-6,0),(-1.5,13.5),(1.5,22.5)
\end{aligned}
$$

c) $|2 x+1|=x$

$$
\begin{array}{ll}
y_{1}: & |2 x+1| \\
y_{2}: & x
\end{array}
$$

x min: -5 max: 5 y min:-2 max: s

Solution (s):
No so 1 n

Example 3: A manufacturer rejects 250 g boxes of Goldfish Crackers when the actual mass of the box differs from the stated mass by more than 3.5 g .
a) Write an absolute value equation that can be used to determine the greatest and least masses that are acceptable.

$$
\begin{aligned}
& \text { Let } x=\text { weight of box } \\
& \qquad|x-250|=3.5
\end{aligned}
$$

b) Solve the equation. What is the least mass that is acceptable? What is the greatest mass that is acceptable?

$$
\begin{array}{cc}
x-250=3.5 & -x+250=3.5 \\
x=253.5 & x=246.5 \\
\uparrow & \uparrow \\
\text { greatest } & \text { least } \\
246.5 \mathrm{~g} \leq x \leq 253.5 \mathrm{~g}
\end{array}
$$

