Lesson 4.4.2

Saturday, February 4, 2017 4:44 PM

PREC 11

4.4 The Discriminant

The solution to any quadratic function $ax^2 + bx + c = 0$ can be found by applying the Quadratic Formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

But sometimes it is more useful to determine how many solutions there will be instead of finding the actual numerical answers. To do this we use the discriminant.

The **discriminant** b-4ac helps us determine the nature of the roots without actually knowing what they are.

If: there are: $b^2-4ac>0$ 2 different real roots $b^2-4ac<0$ no real roots $b^2-4ac=0$ one real roots

Example 1: Determine the nature of the roots of: $D = b^2 - 4ac$

a.
$$3x^2-5x-12=0$$

 $D = (-5)^2-4(3)(-12)$
 $= 25+144$
 $= 169$

$$D = (-5)^{2} - 4(3)(-12)$$

$$= 25 + 144$$

$$= 169$$

$$\therefore 2 \text{ real roots}$$

$$c. 2x^{2} - 6x + 7 = 0$$

$$D = (-6)^{2} - 4(2)(7)$$

$$= 36 - 56$$

:. No real roots

= -20

a.
$$3x^2-5x-12=0$$

b. $4x^2-20x+25=0$
 $D = (-5)^2-4(3)(-12)$
 $a=4$
 $b=-20$
 $b=-20$
 $c=4$
 $c=4$

Example 2: For what values of k does $kx^2 - 3x + 2 = 0$:

- a. have two different roots?
- b. have two equal real roots?

c. have no real roots?

Example 3: Solve each of the following inequalities for x

a.
$$2x + 8 < 0$$

b.
$$24 - 6x > 0$$

c.
$$4k^2 - 40 > 0$$

d.
$$25 - 5k^2 > 0$$

