Lesson 4.2
Saturday, February 4, 2017 4:41 PM

* Always check for common factors first *

PRC 11
4.2 Factoring Quadratic Equations

Warm-Up:

1. Factor each trinomial.
a) $x^{2}+4 x-21$

$$
=(x-3)(x+7)
$$

b) $\quad 2 x^{2}-7 x+6$

$$
=(2 x-3)(x-2)
$$

2. Factor each expression fully.
a) $-3 x^{2}+9 x y-6 y^{2}$

$$
\begin{aligned}
& =-3\left(x^{2}-3 x y+2 y^{2}\right. \\
& =-3(x-y)(x-2 y)
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } x^{x^{4}-16} \sqrt{16} \\
&=\left(x^{2}+4\right)^{2}\left(x^{2}-4\right) \\
&=\left(x^{2}+4\right)(x+2)(x-2)
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } 3 x^{3}-3 x^{2}+27 x \\
& =3 x\left(x^{2}-x+9\right)
\end{aligned}
$$

cannot factor further.

* Use a variable to equal the expression in the brackets*

Example 1: Factor each polynomial:

$$
\begin{aligned}
& \text { Let } m=x+2 \\
& \text { Let } P=n+3 \\
& \text { a. } \quad 12(x+2)^{2}+24(x+2)+9 \\
& =12 m^{2}+24 m+9 \\
& =3\left(4 m^{2}+8 m+3\right) \\
& =3(2 m+3)(2 m+1) \\
& =3(2(x+2)+3)(2(x+2)+1) \\
& =3(2 x+4+3)(2 x+4+1) \\
& =3(2 x+7)(2 x+5) \\
& \text { b. } \\
& -2(n+3)^{2}+12(n+3)+14 \\
& =-2 p^{2}+12 p+14 \\
& =-2\left(p^{2}-6 p-7\right) \\
& =-2(p+1)(p-7) \\
& \xi \\
& =-2(n+4)(n-4)
\end{aligned}
$$

Many quadratic equations can be solved by factoring. The zero product property states that if $a b=0$, then $a=0$ or $b=0$, or both. Therefore, the roots of a quadratic equation occur when the product of the factors is equal to zero.

Example 2: Solve each equation, then verify the solution.
a. $\quad x^{2}-2 x-8=0$

$$
(x+2)(x-4)=0
$$

Equals zero when $x+2=0$

$$
\text { GR } x-4=0
$$

$$
x+2=0
$$

$$
x-4=0
$$

$$
x=-2
$$

$$
x=4
$$

c. $\quad 2 x^{2}+18=12 x$

$$
\begin{gathered}
2 x^{2}+18-12 x=0 \\
2 x^{2}-12 x+18=0 \\
2\left(x^{2}-6 x+9\right)=0 \\
2(x-3)(x-3)=0 \\
x=3 x=3 \\
\therefore x=3
\end{gathered}
$$

b.

$$
\begin{aligned}
& 3 x^{2}-2 x-8=0 \\
& (3 x+4)(x-2)=0 \\
& \downarrow \\
& 3 x+4=0 \quad x-2=0 \\
& 3 x=-4 \quad x=2
\end{aligned}
$$

d.

$$
\begin{aligned}
& x=-\frac{4}{3} \\
& 2 x^{2}=4 x
\end{aligned}
$$

$$
\begin{aligned}
& 2 x^{2}-4 x=0 \\
& 2 x(x-2)=0 \\
& \downarrow \\
& 2 x=0 \quad x-2=0 \\
& x=0 \quad x=2
\end{aligned}
$$

Example 3: A rectangular garden has dimensions 5 m by 7 m . When both dimensions are
 increased by the same length, the area of the garden increases by $45 \mathrm{~m}^{2}$.
Determine the dimensions of the larger garden.

$$
\begin{aligned}
& \text { New } \\
& \begin{array}{l}
7+x \\
=35+45 \\
=80 \mathrm{~m}^{2} 5+x
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
(7+x)(5+x)=80 \\
35+7 x+5 x+x^{2}=80 \\
x^{2}+12 x+35-80=0 \\
x^{2}+12 x-45=0 \\
(x-3)(x+15)=0
\end{gathered}
$$

\therefore New dimensions

$$
\text { are } 10 \mathrm{~m} \text { by } 8 \mathrm{~m}
$$

Example 4: A football is kicked vertically. The approximate height of the football, h metres, after t seconds is modeled by the formula: $h=1+20 t-5 t^{2}$.
a. Determine the height of the football after 2 s .

$$
\begin{aligned}
h & =1+20(2)-5(2)^{2} \\
& =1+40-5(4) \\
& =1+40-20 \\
& =21 m
\end{aligned}
$$

b. When is the football 16 m high?

$$
\begin{gathered}
16=1+20 t-5 t^{2} \quad h=16 \\
5 t^{2}-20 t+15=0 \\
5\left(t^{2}-4 t+3\right)=0 \\
5(t-1)(t-3)=0
\end{gathered}
$$

$$
\therefore t=1 \text { or } 3
$$

The football is 16 m high at 1 sec and 3 sec .
Assignment: pg. 229 15,28

HoW

First, \& looked in the bock of the book, but it wasn't an oddnumbered problem.

