Lesson 3.1.2

Saturday, February 4, 2017

4:39 PM

PREC 11

3.1 (cont.) Investigating Quadratic Functions in Vertex Form

PREC 11

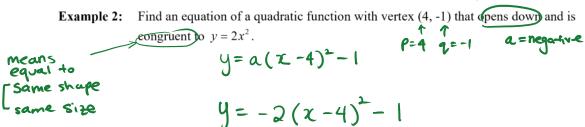
3.1 (cont.) Investigating Quadratic Function $\frac{1}{2}$ direction $\frac{1}{2}$ left/right

To find the equation of a quadratic function given the vortex and a point, substitute the values into the formula: $y = a(x-p)^2 + q$ up/dawn

Find an equation of a quadratic function with vertex (1, -2) which passes through (3, -4).

of a quadratic function with vertex
$$(1, -2)$$
 which passes through

$$y = a(x-1)^{2} - 2$$


$$-4 = a(3-1)^{2} - 2$$

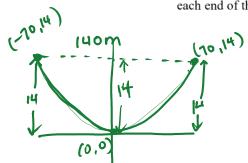
$$-4 = a(2)^{2} - 2$$

$$-4 = 4a - 2$$

$$-2 = 4a$$

$$a = -0.5 \text{ or } -3$$

You can determine the number of x-intercepts for a quadratic function if you know the location of the vertex and the direction of opening.


Determine the number of x-intercepts for each quadratic function without graphing:

a.
$$f(x) = 0.5x^2 - 7$$
 b. $f(x) = -2(x+1)^2$ c. $f(x) = -\frac{1}{6}(x-5)^2 - 11$

opens opens on x -axis opens on x -axis down below x -axis for below x -axis

Example 4: A cable that supports a suspension bridge is parabolic. The horizontal distance between the ends of the cable is 140 m. The midpoint of the cable is 14 m below each end of the cable. Determine an equation to model the cable.

$$y = a(x-p)^{2} + 9$$

$$y = ax^{2}$$

$$14 = a(70)^{2}$$

$$14 = a 4900$$

$$\frac{14}{4900} = a$$

$$\frac{2}{100} = \frac{1}{350} = a$$

$$y = \frac{1}{350} \chi^2$$

* Keep "a" in lowest terms.

Assignment: pg. 158 #7, 9, 10, 12, 13, 15 17, 21

