Lesson 1.0

Friday, February 3, 2017 5:41 PM

*Linear Relation means 2+y-values
must increase /decrease by a constant amount.

Chapter 1 Prerequisite Skills

1. Determine whether each relation is linear or non-linear. Justify each answer.

		Corrs	1001
constant :: Linear	14	X	b) $v = 2x + 7$
constant	a 2+2	+1 40	
11.000	11 2 +2	4162	
:: Linear	13 2 +2	⁺¹ (3	

- **2.** Paul writes the following number pattern: 5, 13, 21, ...
 - a) Create a table of values for the first five terms.

Term	value
2	5 13
3	21
5	29

b) Develop an equation that can be used to determine the value of each term in the number pattern.

Value = 8 (Term #) - 3

$$y = 8x - 3$$

c) Which term has a value of 133?

$$133 = 8x - 3$$

133 is the 17th term.

3. Crea

reate a g	raph a	nd a linear equation to represent the table of values.	4-int
x	y	ſ	٠, " لم
-6	-15		
-4	-11		4-72-3
-2	-7		y=22-3
0	-3	~	
2	1)
4	5		stope
6	9		

Copyright © 2011, McGraw-Hill Ryerson, ISBN: 9780070738836

Slope Intercept:
$$y = mx + b$$

y in slope-intercept form.

Slope-rise

no

4. Express each equation in slope-intercept form.

a)
$$3x - y = 6$$

b)
$$-5x + 2y + 7 = 0$$

$$2y = 5x - 7$$

$$y = \frac{5}{2}x - \frac{7}{8}$$

5. Evaluate.

a)
$$\sqrt[3]{27}$$

b)
$$\sqrt[4]{-\frac{16}{625}}$$

cannot take the cannot of number.

a negative number.

6. Simplify each expression by rewriting it using positive exponents only.

a)
$$\frac{5^2}{5^7} = 5^{2-7} = 5^{-5} = \frac{1}{5^5}$$

b)
$$[(x^{-2}y)^4]^{-3}$$
 = $(\chi^{-2} \times 4 \ y^{-1})^{-3}$
= $(\chi^{-8} y^4)^{-3}$
= $\chi^{-8 \times -3} y^{4/-3}$
= $\chi^{-4} y^{-1/2} = \frac{\chi^{-4}}{y^{-1/2}}$

- 7. A mysterious substance has a half-life of 5 minutes. Suppose you have a sample of this substance with a mass of 700 g. Your teacher gives you the formula for the mass of the mysterious substance remaining after n 5-min intervals is $A = 700 \left(\frac{1}{5}\right)^n$.
 - a) Create a table of values showing the amount of your substance remaining after the first four 5-min intervals.

#5-min int.	Amount	Remaining
l	140	
2	28	
3	5.6	
4	1.12	

b) How long would it take for the sample to be reduced to $\frac{1}{125}$ th its original size?

This happens at the 3rd 5 minute interval which means it takes the sample 15 minutes to be reduced to 1 the its original size.