9.3 Quadratic inequalities in Two Variables

Warm Up 1: Are the following points solutions to the inequality $\geq x^{2}-3 x-4$.
a) $(3,0)$
b) $(7,-1)$
us
$0 \geq 3^{2}-3(3)-4^{R S}$

$$
-1 \geq 7^{2}-3(7)-4
$$

$0 \geq 9-9-4$
$0 \geq-4$
yes.

$$
-1 \geq 24
$$

No.

Warm up 2: For $\mathrm{A}\left(-1\right.$, a) to be a solution of $y>-2 x^{2}+5$, what must be true about a? How could you write this in set notation?

$$
a>-2(-1)^{2}+5
$$

$a>3$
a has to be greater than 3 .

$$
\{a \mid a>3, a \in \mathbb{R}\}
$$

A quadratic inequality in two variables can be written as:

$$
\begin{gathered}
y>a x^{2}+b x+c \quad y<a x^{2}+b x+c \quad y \geq a x^{2}+b x+c \\
\text { leading coefficient }
\end{gathered}
$$

$$
y \leq a x^{2}+b x+c
$$

Where a, b and c are constants and $a \neq 0$. The graph of a quadratic inequality is all the ordered pairs (x, y) that satisfy the inequality.

Chapter 9: Linear and Quadratic Inequalities

Example 1: Graph $y<x^{2}-6 x$ and identify two solutions points.
Boundary Line

$$
y=x^{2}-6 x
$$

vertex:
x-int:

$$
0=x^{2}-6 x
$$

$$
0=x(x-6)
$$

$$
\begin{aligned}
& y=3^{2}-6(3) \\
& y=-9
\end{aligned}
$$

$$
x=0 \text { or } x=6
$$

Two so ln: $(-5,5) \&(8,8)$

Example 2: Graph $y \leq-2 x^{2}+8$
B.L. $y=-2 x^{2}+8$
x-int:

$$
\begin{aligned}
& 0=-2 x^{2}+8 \\
& -8=-2 x^{2} \\
& 4=x^{2} \\
& \pm 2=x
\end{aligned}
$$

$$
y=8
$$

Solid bic \leftrightarrows
Test pt. $(0,0)$
y-int/vertex:

$$
y=-2(0)^{2}+8
$$

$$
\begin{aligned}
& 0 \leq-2(0)^{2}+8 \\
& 0 \leq 8
\end{aligned}
$$

Chapter 9: Linear and Quadratic Inequalities

Example 3: Two numbers are related in this way: four times the square of one number is less than 2 times the sum of the other number and 3.
a) Write an inequality to represent this situation.

$$
\text { Let } \begin{array}{rl}
x=\text { one } \# & 4 x^{2}<2(y+3) \\
y=\text { other } \# & 4 x^{2}<2 y+6
\end{array}
$$

b) Graph the inequality.

BAL.

$$
\begin{aligned}
& 4 x^{2}=2 y+6 \\
& 4 x^{2}-6=2 y \\
& 2 x^{2}-3=y
\end{aligned}
$$

$$
x \text {-int: }
$$

y-int/vertex

$$
\begin{aligned}
& 2 x^{2}-3=0 \\
& 2 x^{2}=3 \\
& x= \pm \sqrt{1.5}
\end{aligned}
$$

$$
2(0)^{2}-3=y
$$

Broken lime ($<$

$$
\begin{aligned}
& \text { Test } p+(0,0) \\
& 4(0)^{2}<2(0)+6 \\
& 0<6
\end{aligned}
$$

c) Use the graph to identify three pairs of integer values for the two numbers.

$$
\begin{aligned}
& x=1 \text { and } y=2 \\
& x=0 \text { and } y=0 \\
& x=0 \text { and } y=2
\end{aligned}
$$

Example 4:

In order to get the most revenue from registrations for a camping trip, an adventure company needs to have as many campers as possible at a price per camper that is reasonable. If 15 people sign up, the price per person is $\$ 50$. The registration fee is reduced by $\$ 2$ for each additional camper beyond 15 . The relationship between the number of campers beyond 15 and y is the given by $y \leq(50-2 x)(15+x)$, where x represents the number of campers beyond 15 and y is the total revenue, in dollars.
$x=\#$ of $\$ 2$ decrease
a) Use your calculator to sketch a graph to represent this situation.

$$
y_{1}=(50-2 x)(15+x)
$$

What do we need to change in our calculator to get it to shade the solution region?

$$
\begin{aligned}
& \text { Move the cursor to the left of } y \\
& \text { press enter button } 2 x \text { for } \geq \\
& \text { press enter button } 3 x \text { for } \leq
\end{aligned}
$$

b) Use your calculator to determine the total number of registrations that will generate revenue of at least $\$ 500$.

$$
\begin{aligned}
& y_{2}=500 \\
& \quad(17.25,500) \\
& \begin{aligned}
15+17.25 & =32.25 \\
& \simeq 32
\end{aligned}
\end{aligned}
$$

32 registrations will generate revenue of at least $\$ 500$.

