9.2 Quadratic Inequalities in One Variable

A quadratic inequalities in one variable can be written as:

$$
a x^{2}+b x+c<0 \quad a x^{2}+b x+c>0 \quad a x^{2}+b x+c \leq 0 \quad a x^{2}+b x+c \geq 0
$$

Where a, b and c are constants and $a \neq 0$.

When solving a quadratic inequality in one variable, there are more than one method you can use: graphing or test point chart.
method 1 method 2
Example 1: Solve $x^{2}-x-12 \leq 0$
Step 1: Rewrite the inequality as a quadratic equation and find its roots.

$$
\begin{gathered}
x^{2}-x-12=0 \\
(x-4)(x+3)=0 \\
x=4,-3
\end{gathered}
$$

** These are critical points to solve your inequality **
Step 2: Use the roots to sketch a graph of the quadratic function. leading coefficient "a">0 ひ

$$
\underbrace{x^{2}-x-12} \leq 0
$$

Step 3: Use the critical points and your inequality sign to shade the appropriate region on a number line.

Step 4: Write the solution to the inequality in set notation.

$$
\{x \mid-3 \leq x \leq 4, x \in \mathbb{R}\}
$$

Example 2: Solve $2 x^{2}-5 x-3>0$
Step 1: Rewrite the inequality as a quadratic equation and find its roots.

$$
\begin{aligned}
& 2 x^{2}-5 x-3=0 \\
& (2 x+1)(x-3)=0 \\
& 2 x+1=0 \quad x=3 \\
& x=-1 / 2 \quad
\end{aligned}
$$

Step 2: Use the roots to complete the following chart.
Step 2: Use the roots to complete the following chart.

Interval	$(-\infty,-1 / 2)$	$(3,3)$	$(3, \infty)$
Test points	$x<-1 / 2$	$-1 / 2<x<3$	$3<x$ or $x>3$
Substitution	$x=-1$	$x=2$	$x=9$
Is $2 x^{2}-5 x-3>0$	$2(-1)^{2}-5(-1)-3$	$2(2)^{2}-5(2)-3$	$2(9)^{2}-5(9)-3$
	4	-5	114

Step 3: Use the critical points and your inequality sign to shade the appropriate region on a number line.

$$
\begin{aligned}
& 2 x^{2}-5 x-3>0 \\
& \text { open circle }
\end{aligned}
$$

Step 4: Write the solution to the inequality in set notation.

$$
\{x \mid x<-1 / 2, x>3, x \in \mathbb{R}\}
$$

Example 1 used graphing to find the solution to the inequality and Example 2 used a test point chart to organize the results. Which method do you prefer? Why?

Chapter 9: Linear and Quadratic Inequalities

Example 3: Solve $-8 x \leq-3\left(x^{2}-1\right)$ using a method of your choice.

$$
\begin{aligned}
& -8 x \leq-3 x^{2}+3 \\
& 3 x^{2}-8 x-3=0 \\
& (3 x+1)(x-3)=0 \\
& 3 x+1=0 \quad x-3=0 \\
& x=-\frac{1}{3} \quad x=3
\end{aligned}
$$

Using method l

Example 4: Erik submitted the following number line as a solution to his quadratic inequality. What inequality was he solving?

$$
x+1=0 \quad x-5=0
$$

$$
\begin{aligned}
& x=5 \\
& x-5=0
\end{aligned}
$$

soln\#1 $x^{2}-4 x-5 \leq 0$

Example 5:
a) Solve $x^{2}-2 x+3 \leq 0$

Find the roots

$$
x^{2}-2 x+3=0
$$

Quad Formula

$$
\begin{aligned}
& \frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(3)}}{2(1)} \\
& =\frac{2 \pm \sqrt{4-12}}{2} \leftarrow \text { No real } \\
& \text { lots }
\end{aligned}
$$

b) Solve $x^{2}-2 x+3 \geq 0$
always the

$$
\{x \mid x \in \mathbb{R}\}
$$

Complete square?

$$
\left\{\begin{array}{l}
y=x^{2}-2 x+3 \\
=\left(x^{2}-2 x+1-1\right)+3 \\
=\left(x^{2}-2 x+1\right)+2 \\
=(x-1)^{2}+2
\end{array}\right.
$$

vertex $(1,2)$
The inequality does not work b/c $x^{2}-2 x+3$ is Never less than zero.
\therefore No soil
c) Compare your solutions for a and b. What does this mean?

When we cannot algebraically determine the roots, it does not necessarily mean there is no soln.

Always use the graph to verify.

Chapter 9: Linear and Quadratic Inequalities

$$
A=l \omega
$$

Example 6: The length of a rectangle is 2 cm greater than its width. The area of the rectangle is at least $20 \mathrm{~cm}^{2}$.

$$
l=w+2
$$

a) Identify the variables and write an inequality to represent this situation.
let $\omega=$ width

$$
w(w+2) \geq 20
$$

$$
w>0
$$

$(\omega \neq$ negative \#)
b) Use an algebraic method to determine the possible dimensions of the rectangle? Round your answers) to two decimal places.

$$
\begin{aligned}
& \omega(\omega+2) \geq 20 \\
& \omega^{2}+2 w \geq 20 \\
& \omega^{2}+2 \omega-20 \geq 0 \\
& \omega^{2}+2 w-20=0 \\
& w=\frac{-2 \pm \sqrt{2^{2}-4(1)(-20)}}{2(1)} \\
& =\frac{-2 \pm \sqrt{4+80}}{2}=\frac{-2+\sqrt{84}}{2}=3.58 \\
& \omega \geq 3.58 \mathrm{~cm} \\
& l \geq 5.58 \mathrm{~cm} \\
& =\frac{-2 \pm \sqrt{84}}{2}=\frac{-2-\sqrt{84}}{2}=\frac{-5.58}{\text { Reject }} \\
& \text { c) Could you use your calculator to verify your results? Explain. } \\
& \left\{\begin{aligned}
l & =w+2 \\
l & =3.58+2 \\
& =5.58
\end{aligned}\right. \\
& \text { Reject }\{\omega \mid \omega \geq 3.58, \omega \in \mathbb{R}\} \\
& \{l \mid l \geq 5.58, l \in \mathbb{R}\} \\
& \text { yes }
\end{aligned}
$$

To visualize graph and find zero.

