Chapter 8: System of Equations
8.2 Solving Systems of Equations Algebraically

Warm Up:
Solve System of Linear Equations Algebraically.

$$
\begin{aligned}
& 2 x+y=13 \\
& x+y=8
\end{aligned}
$$

Chapter 8: System of Equations

Solve the system algebraically and verify your solution.

$$
\begin{aligned}
& 3 x+y=-9 \\
& 4 x^{2}-x+y=-9
\end{aligned}
$$

Both so In are correct.
\therefore Two sol are $(0,-9)$ and $(1,-12)$

Chapter 8: System of Equations

Solve the system algebraically and verify your solution.

$$
\begin{aligned}
& 6 x^{2}-x-y=-1 \\
& 4 x^{2}-4 x-y=-6
\end{aligned}
$$

Both So ln are correct
\therefore The system has two so ln: $(-2.5,41)$ and $(1,6)$

Chapter 8: System of Equations

Suppose the crate's height above the ground is given by the following two equations. (p. 445)

$$
\begin{aligned}
& h=-4.9 t^{2}+900 \\
& h=-4 t+500
\end{aligned}
$$

a) How long after the crate leaves the aircraft does the parachute open? Express your answer to the nearest hundredth of a second.
Use substitution

$$
-4.9 t^{2}+900=-4 t+500
$$

$$
-4.9 t^{2}+4 t+900-500=0
$$

The parachute opens about

$$
\begin{aligned}
& -4.9 t^{2}+4 t+400=0 \\
& a=-4.9 \\
& b=4
\end{aligned} \quad t=\frac{-4 \pm \sqrt{4^{2}}}{20}
$$

$$
c=400
$$

b) What height above the ground is the crate when the parachute opens? Express your answer to the nearest meter.
use ANS button or use up to 4 decimal places

$$
\begin{aligned}
h & =-4(9.45)+500 \\
& =462.19
\end{aligned}
$$

When the parachute opens, the crate is 462 m above the ground.
c) Verify your solution.

$$
(9.45,462)
$$

$$
\begin{aligned}
\text { LS } & \text { RS } \\
462 & =-4.9(9.45)^{2}+900 \\
462 & =462
\end{aligned}
$$

Benjamin makes a good hit and the baseball travels on a path modelled by $h=-0.1 x^{2}+2 x$. Leah is in the outfield directly in line with the path of the ball. She runs toward the ball and jumps to try to catch it. Her jump is modelled by the equation $h=-x^{2}+39 x-378$. In both equations, x is the horizontal distance in meters from home plate and h is the height of the ball above the ground in meters.
a) Solve the system algebraically. Round your answer to the nearest hundredth.

Using elimination

$$
\text { Now plug in the } x \text {-values. }
$$

$$
\begin{aligned}
y & =-0.1 x^{2}+2 x \\
-(y & \left.=-x^{2}+39 x-378\right) \\
\hline 0 & =0.9 x^{2}-37 x+378
\end{aligned}
$$

use quadratic formula

$$
\begin{array}{rlrl}
x & =\frac{-(-37) \pm \sqrt{(-37)^{2}-4(0.9)(378)}}{2(0.9)} & \begin{aligned}
h & =-0.1(18.96)^{2}+2(18.96) \\
& =1.96
\end{aligned} \\
& =\frac{37 \pm \sqrt{1369-1360.8}}{1.8} & (18.96,1.96) \\
& =\frac{37 \pm \sqrt{8.2}}{1.8}=22.15 \\
& =18.96
\end{array}
$$

$$
\begin{aligned}
& h=-0.1(22.15)^{2}+2(22.15) \\
&=-4715 \\
& \text { Reject }
\end{aligned}
$$

b) Explain the meaning of the point of intersection. What assumptions are you making?

Lean catches the baseball jumping 1.96 m above the ground and 18.96 m running on the field. (you can write this better...) Assumptions: wind frictions

Homework p. 451
\# 1-2 optional
\# 3 (a, d), 4 (a, c), $6-9,11-14,18,20,23,24$

