Lesson 2.3
Saturday, February 4, 2017 4:35 PM

From SOH CAH TOA we know:
From left
From right

$$
\begin{aligned}
& \sin A=\frac{h}{c} \quad \sin C=\frac{h}{a} \\
& C \sin A=h \quad a \sin C=h \\
& \therefore C \sin A=a \sin C \\
& \therefore \frac{c}{\sin C}=\frac{a}{\sin A} \quad \text { or } \quad \frac{\sin A}{a}=\frac{\sin C}{c}
\end{aligned}
$$

Therefore, the Sine Law states:

$$
\begin{aligned}
& \text { Sine Law states: } \\
& \text { Finding Angles } \rightarrow \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \\
& \text { Finding sides } \rightarrow \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
\end{aligned}
$$

Example 1: In $\triangle \mathrm{PQR}$, determine the length of QR to the nearest tenth of a centimetre.

$$
\text { Find } \angle Q=180-75-39=66^{\circ}
$$

Find p

$$
\begin{aligned}
& p=\frac{(8.1) \sin 75^{\circ}}{\sin 66^{\circ}} \\
& p=8.564 \simeq 8.6 \mathrm{~cm}
\end{aligned}
$$

Example 2: In $\triangle \mathrm{GHJ}$ determine $\angle \mathrm{G}$ to the nearest degree.

$$
\begin{aligned}
& \text { Find } \angle J \text { first } \\
& \qquad \frac{\sin J}{j}=\frac{\sin H}{h} \\
& 6+\frac{\sin J}{b . T}=\frac{\sin 65^{\circ}}{8.6} \times 6.1 \\
& \sin J=0.642846221 \\
& J=\sin ^{-1}(0.6428 \ldots) \\
& \angle J=40
\end{aligned}
$$

Find $\angle G$

$$
180-65-40=75^{\circ}
$$

Example 3: In $\triangle \mathrm{PQR}, \mathrm{PQ}=8 \mathrm{~cm}, \angle \mathrm{P}=55^{\circ}$ and $\mathrm{QR}=12 \mathrm{~cm}$. Solve the triangle.
Find all angles \& sides

Find $<Q$

$$
\begin{aligned}
\angle Q & =180-55-33 \\
& =92^{\circ}
\end{aligned}
$$

Find $\angle R$:

$$
\frac{\sin R}{8}=\frac{\sin 55^{\circ}}{12}
$$

$$
\sin R=0.546 \ldots
$$

$$
\begin{aligned}
& R=\sin ^{-1}(0.546 \ldots) \\
& R=33^{\circ}
\end{aligned}
$$

Example 4: Brendan and Diana plan to climb the cliff at Dry Island Buffalo Jump, Alberta. They need to know the height of the climb before they start. Brendan stands at point B, as shown in the diagram. He uses a clinometer to determine $\angle A B C$, the angle of elevation to the top of the cliff. Then he estimates $\angle C B D$, the angle between the base of the cliff, himself, and Diana, who is standing at point D. Diana estimates $\angle C D B$, the angle between the base of the cliff, herself, and Brendan.

Determine the height of the cliff to the nearest metre.

$\frac{d}{\sin 50^{\circ}}=\frac{60}{\sin 70}$
$d=48.9124 \mathrm{~m}$

Assignment: Pg. 108 \#1-3, 4ac, 5ac, 10, 13

