## **FOM 11**

## 1.7 Analyzing Puzzles And Games

Both inductive and deductive reasoning are useful for determining a strategy to solve a puzzle or win a game.

**Example 1:** Use four 9's in a math equation that equals 100.

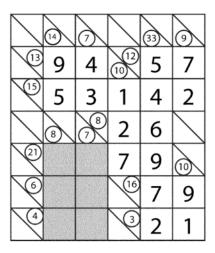
$$\frac{9}{9} + 99 = 99 + (9 - 9)$$
= 100

**Example 2:** The following figure is made up of 12 sticks. Can you move just two sticks and create seven squares?



**Example 3:** Put the numbers 1 to 8 in each square so that each side adds to the middle term.

| 6 | 5  | 1 | i | 8  | 4 | 2 | l  | 5 | 8 | 4  | 3 |
|---|----|---|---|----|---|---|----|---|---|----|---|
| 4 | 12 | 8 | 7 | 13 | 3 | 2 | 14 | 6 | ī | 15 | 5 |
| 2 | 7  | 3 | 5 | 2  | 6 | 4 | 7  | 3 | 6 | 2  | 7 |


1,2,3,4,5,6,7,8

**Kakuro** is an arithmetic puzzle in a grid. You must place the digits 1 to 9 into a grid of squares so that **each horizontal or vertical run of white squares adds up to the clue** printed either to the left of or above the run.

**No digit can be repeated** within any single run. Runs end when you reach a non-white square. Every puzzle has **a single unique solution** and can be solved purely by logic - **no guessing is required**.

**Example 4:** Complete the following Kakuro puzzles by filling in the grey squares.

|     | 14 | 0  |          | 33 |    |
|-----|----|----|----------|----|----|
| 13  | 9  | 4  | 12/19/19 | 5  | 7  |
| 15  |    |    |          |    |    |
|     | 8  | 78 | 2        | 6  |    |
| 21  | 1  | 4  | 7        | 9  | 10 |
| (O) | 4  | 2  | 16       | 7  | 9  |
| 4   | 3  | 1  | 3        | 2  | 1  |



Assignment: pg. 55 #4, 5, 6, 7, 9, 10, 11